
Manabu Okamoto. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 7, (Part -1) July 2016, pp.32-38

www.ijera.com 32 | P a g e

An Anonymous System using Single Sign-on Protocol

Manabu Okamoto*
*Kanagawa Institute of Technology, Shimo-ogino1030 Atsugi Kanagawa Japan

ABSTRACT
Anonymity is essential in various online scenarios, such as a questionnaire system for lecture evaluation in a

university. In such a scenario, only a person who attended the lecture concerned should be able to access the

system and fill out the questionnaire. Further, anonymity is very important because only anonymous users will

answer the questions honestly. Making users who participate from the beginning anonymous is relatively easy.

In contrast, making users who participate in the middle anonymous is very difficult. In this paper we propose a

new anonymous system based on single sign-on (SSO)—an authentication process that allows a user to access

multiple services with one set of login credentials. The proposed system makes all users, both from the

beginning and those who participate in the middle, anonymous.

Keywords: Questionnaire, security, single sign-on, user anonymity.

I. INTRODUCTION
Anonymous systems are required in a

variety of situations, such as elections [1], whistle-

blowing, questionnaires, and bulletin board systems

(BBS). Without anonymity these processes may not

be accomplished satisfactorily.

For example, when students are asked to

complete questionnaires about lectures at a

university, no one (including teachers, students, and

service managers) should know who submitted what

answer. Without anonymity many students would

not be comfortable giving an honest evaluation as

they may fear retribution from the lecturer

concerned. Thus, without anonymity all users may

refrain from giving bad evaluations and so the

results obtained may not be an accurate reflection of

the quality of the lecture. Paper questionnaires allow

students to give honest answers as they do not have

to submit their IDs, names, and affiliations.

However, paper questionnaires are labor-intensive,

time-consuming, and costly. Further, filling out a

questionnaire at an appointed location and at an

appointed time can be a bit onerous for students.

Questionnaires on the web enable students

to complete questionnaires simply by launching a

browser anywhere in their own time until the

deadline. In addition, the aggregation process is

much easier because the answers can be tabulated

electronically. Naturally, anonymity is also

important on the web. Moreover, considering rules

such as one person being able to vote only once and

students being able to change their votes as many

times as they desire before the deadline, user

account management is also necessary.

In this paper, we propose a new anonymous

system that can be used for anonymous

questionnaire systems and other user account

systems that require anonymity. The proposed

method utilizes a single sign-on (SSO)

mechanism—which allows a user to access multiple

services with one set of login credentials—to

manage users’ accounts and make all users

anonymous. The proposed method enables both

users who participate from the beginning of a

process and those who participate in the middle

anonymous again easily.

II. ASSUMPTIONS MADE IN THE

PROPOSED SYSTEM
We assume the following conditions in the proposed

system:

- Only users who have proper access rights can

use the system.

- One person can make only one submission in

one term.

- There is a deadline. However, users can change

the content of their answers such as a vote or an

answer to a questionnaire any number of times

prior to the deadline. In other words, users can

manage their accounts on the system and save

their answers in the middle of writing to their

account. In addition, the system manager can

manage all user accounts.

- The system has anonymity. At no time can

anyone, including the system manager, ascertain

what content is submitted by any specific user.

- However, if any problem arises, then the source

should be traceable.

For example, only students who registered

for a particular lecture at a university should be able

to answer questionnaires related to that lecture. Each

student can submit only one questionnaire for each

lecture. Further, until the deadline, which may be the

next lecture, students can save their partially

completed questionnaires to their user account.

RESEARCH ARTICLE OPEN ACCESS

Manabu Okamoto. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 7, (Part -1) July 2016, pp.32-38

www.ijera.com 33 | P a g e

Furthermore, no one, including users and system

managers, can know who completed any particular

questionnaire. We propose a new method that

satisfies these conditions.

III. RELATED WORK
Various types of anonymity techniques

exist. They include proxy servers, mix-net, and

onion routers. Proxy servers [2] serve as hubs

through which internet requests are processed. Client

computers that utilize proxy servers send requests to

the proxy server, which then processes the request

and returns the requested information to the client.

Proxy servers act as intermediaries between clients

and the web servers on the internet. They can filter

web content, circumvent restrictions such as parental

blocks, and also provide anonymity for users on the

internet. Web servers recognize requests as coming

from the proxy server and do not know the client

itself.

Mix-nets [3–5] provide anonymous

channels. They provide anonymity and privacy by

shuffling information sent from clients. Anonymity

is kept unless all servers conspire. Mix-nets are used

for electronic voting. Multiple mix-net servers are

aligned and each voter encrypts his/her vote with the

public key of each mix-net server in sequence and

sends it to the first mix-net server. Then, each mix-

net server decrypts the vote and mixes it with other

votes. In the end, no one can trace the votes that

arrive at the tallying server through all the mix-net

servers.

Onion routers [6] also use encryption and

shuffle to provide anonymity. An onion network

encapsulates messages in layers of encryption like

layers of an onion. The encrypted data are

transmitted through onion routers, with each

decrypting the encryption and peeling away a layer

to find the next destination. The final layer is

decrypted when the message arrives at its destination.

The sender remains anonymous because each router

knows only the location of the preceding and next

router. However, when a user wants to use this

anonymous channel, he/she has to select onion

routers, obtain their public keys, and make a capsule.

An anonymous channel is indispensable for

our system, especially at the network layer. For

example, in the lecture questionnaire scenario, if a

respondent is traced by IP address then an

anonymity problem arises. However, when users use

an anonymous channel conventionally, it is very

burdensome because of the need to, for example,

select routers, acquire keys, and encrypt messages.

However, the necessity of anonymity on a

network is lower for a lecture questionnaire than for

a general political election. Further, many university

networks utilize DHCP for students, which provides

―negative anonymity.‖ DHCP servers provide users

with IP addresses. However, the same user may get

different IP addresses from time to time. Thus, such

a user cannot be traced by IP address. The manager

of a DHCP server can obtain the MAC address

according to the IP address, but tracing a user via

MAC address is still difficult. In many cases, the

manager of a university network does not manage

the MAC addresses of all students. This situation,

which we term ―negative anonymity,‖ is sufficient

anonymity for a lecture questionnaire.

In this paper, we do not refer to the

anonymous channel. We assume that anonymity at

the network layer is achieved via a technique such as

onion router, mix-net, or ―negative anonymity.‖

IV. ISSUES WITH ANONYMOUS

SYSTEMS
In this paper, we deal with anonymity not at

the network layer but at the application layer. We

discuss this issue in this section. It is very easy to

make users anonymous in web systems. Anonymity

can be easily achieved by web systems managers

generating many IDs and passwords for web

systems, printing them on paper, placing each set in

an envelope, shuffling the envelopes, and then

distributing them to users. Because all the envelopes

would look the same, no one would be able to trace

an individual user’s ID and password.

However, in such a system, anonymity

problems would arise when users enter in the middle

of the process. If only one person joined in the

middle, the manager would make one ID and one

password but would not be able to shuffle this set

with others in order to guarantee anonymity.

Consequently, anyone could guess that the person

with the new ID and password is a new participant.

Further, rectifying this situation by generating new

IDs and passwords for all users would be

burdensome.

We call this situation ―participant in the

middle issue.‖ We need to make users including

participants in the middle anonymous again

efficiently. In this paper, we propose a new method

that can re-anonymize users including participants in

the middle easily using SSO.

V. SINGLE SIGN-ON (SSO)
In this section, we explain the concept of

SSO. SSO is a mechanism whereby a single user

authentication action enables the user to access

multiple web services without needing to enter

multiple sets of credentials. OpenID [7] is an open

SSO standard. When a user uses a service provider

(called a relying party (RP) in the OpenID glossary),

the RP redirects the user to an OpenID provider (OP)

and the OP authenticates the user and brings him/her

back to the RP with an authentication response. The

RP then confirms the response from the OP and

Manabu Okamoto. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 7, (Part -1) July 2016, pp.32-38

www.ijera.com 34 | P a g e

authenticates the user. Fig. 1 shows a basic OpenID

authentication sequence.

1. Input OpenID

User RP OP

2. Discovery

3. Association

4. Authn Request

5. Authentication

6. Authn Response

7.OK

Fig. 1. OpenID authentication sequence.

SSO facilitates the use of multiple RPs

without the need to input ID and password in each

RP; instead certification is received from one OP. We

use SSO on multi-layer RPs to re-anonymize users.

OP is used as an identity server, one RP is used as a

web service server that provides service for users

such as lecture questionnaires, and other RPs are

used as background servers for anonymity.

VI. THE PROPOSED METHOD
In this section, we discuss our proposed

anonymous system. First, we describe the various

entities in our system and our assumptions.

6.1 User (participant)

Users have their own accounts in the

system (which we call SP in this paper) and identity

provider (OP in this paper) and can use the system

anonymously. A user can submit his/her answer only

once to the system through the web. No one,

including managers of the system, can trace the user

from the answer submitted. Users can save and

rewrite their answers at any time until the deadline.

They can also opt not to submit any answers, and

begin participating in the middle of the process. For

example, in the lecture questionnaire at a university

students can register for the lecture in the middle of

the term.

6.2 Service provider (SP)

The SP provides the web service system for

users anonymously. For example, for the lecture

questionnaire, the SP provides questions for users

and request and collates the answers. The SP needs

to make the same number of user accounts as

number of users. However, the SP cannot connect an

account to a real user. For example, the SP cannot

know who uses account ―id00001‖ but the user who

has account ―id00001‖ can use the system

anonymously. Any user who has an account on the

SP can save answers in the middle of writing up to

the deadline. Further, we assume that the SP cannot

change the answers submitted by users, increase or

decrease the number of answers, or cut and ignore

answers. Only a malicious SP would be able to carry

out such actions. To prevent unfair actions we can

use existing security technology such as electronic

sign or blind signatures [8] and checking via a

trusted third party. (However, such details are

beyond the scope of this paper.) In addition, the

content of the system, such as multiple-choice

questions or free descriptive, is independent of our

method. Further, in this method, the SP also acts as

the RP in the OpenID protocol (Fig. 1). Specifically,

the SP obtains identity information with credentials

from other servers and authenticate users.

6.3 Relying party (RP)

We use the same term ―RP‖ as in the

OpenID glossary. Our RP is used as an account relay

server to realize anonymity. Users do not need to be

aware of these RPs. RPs connect SP accounts to OP

accounts anonymously. RPs are different from SPs

and OPs and act as trusted third parties. Multiple

RPs are needed, which we denote RPi (i = 1, 2, …,

M-1, M).

6.4 OpenID provider (OP)

OP is used as identity providers to provide

user authentication results and user IDs to RPs. We

use the same term ―OP‖ as in the OpenID glossary.

First, the user accesses the OP and inputs his/her

ID/password. Op is also different from SPs and RPs

and act as trusted third parties. An OP knows which

OP account is used by whom. For example, an OP

may know that Alice uses the account with ID

―alice_0123.‖ However, the OP cannot know the

answer Alice submitted to the SP. When the SP

needs N users the OP has to have the same N number

of accounts. The OP can provide the identity of users

with multiple SPs, in which case it may have more

accounts than one SP has.

6.5 Preliminary preparation in the proposed

method

In the proposed method, SPs, Ops, and all

RPs need to make accounts for users. We assume

that there are N users and M RPs. Thus, the OP

makes N accounts, X1, X2, …, XN. The SP also makes

N accounts, U1, U2, …, UN. RPi also makes N

accounts, a1
i
, a2

 i
, …, aN

 i
.

The OP accounts, X1, X2, …, XN can be

connected to real users. For example, the OP knows

that the user who has account Xi is Mr. Smith. These

are not necessarily anonymous.

After making the user accounts, the OP

notifies RP1 about them. RP1 gets the account

information from the OP and links accounts {X1, X2,

…, XN} of OP and accounts {a1
1
, a2

 1
, …, aN

1
} of

Manabu Okamoto. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 7, (Part -1) July 2016, pp.32-38

www.ijera.com 35 | P a g e

RP1. These connections must be kept secret.

RP1 then notifies RP2 about accounts {a1
1
,

a2
 1

, …, aN
 1

} and RP2 links RP1 accounts with

accounts of RP2, {a1
2
, a2

2
, …, aN

2
}. Next, the RPs

carry out the same actions. Fig. 2 shows the account

linkage. To simplify the explanation, ―straight‖ links

are used in the figure, but all RPs and SPs actually

make random linkages freely, such as [a7
1
– a3

2
].

As a result, all accounts, {X1, X2, …, XN},

{U1, U2, …, UN}, and { a1
i
, a2

 i
,…,aN

 i
}i=1…M are

connected to each other, as shown in Fig. 2.

However, these connections are known only by

servers that have made connections.

Fig. 2. Account linkage.

The OP can connect account Xi to a real

user but through the accounts in the RPs SP cannot

connect account Ui to a real user. Further, the RPs in

the middle also cannot know who is using account ai
j
.

The OP also cannot know who is using the final

account Ui. In order to trace a real user from Ui, the

RPs, OP, and SP have to conspire together and

provide linkage information.

6.6 Basic actions

The basic actions in this proposed system

are as follows. A user accesses the SP to use the

anonymous service via a browser. The user presses

the ―START‖ button on the top page of the SP that

then redirects the user to the RPM with an OpenID

authentication request. Next, RP gets the

authentication request and remakes it as an OpenID

authentication request by the RP and sends it to the

next RP. The other RPs carry out the same action.

Finally, the user is taken to the OP. This action

follows sequence No. 4 of the OpenID protocol in

Fig. 1. These actions by the RP are carried out

automatically. The user need not to be aware of

these RP actions. Thus, after the user presses the

―START‖ button on SP, the user looks at the top

page of the OP.

The OP shows the login page to the user.

For example, the OP may request ID/password from

the user on the login page. For example, in the

university lecture questionnaire example, the student

affairs office manages the OP and it knows whether

the user has registered for the lecture. However, the

actual system that carries out the lecture

questionnaire is SP, and the OP cannot know the

result. The OP only manages the user’s identity.

After the OP authenticates the user it

provides authentication result of the user with RP1

according to OpenID protocol sequence (sequence

No. 6 in Fig. 1). The user is redirected to RP1 with

this authentication response automatically. An

OpenID authentication response includes the identity

of the user, timestamp, sequence number and

signature of the authenticator and so on. RP1 gets

and confirms the OpenID authentication response

from the OP and find the account of the user on RP1

connected to the account of the user on OP. In Fig. 2,

when RP1 receives the authentication result with the

account of X1 on OP and find account a1
1
 which is

bound to X1 in RP1.

Next, RP1 reforms the authentication result

with the account of a1
1
 on RP1 as RP1’s OpenID

authentication response and sends it to the next RP,

namely, RP2. In fact, the user is taken back to RP2

automatically. The other RPs all carry out the same

action. Each RP reforms the authentication result

with the account of the user on the RP as the RP’s

OpenID authentication response and sends it to the

next RP. Finally, the SP gets the authentication

response from RPM and finds the user account in {U1,

U2, …, UN}. The account identity of the user

changes through all the RPs and the SP cannot know

who uses Ui. This anonymous system is similar to

mix-net. To trace the user all RPs and OP have to

reveal all connections of all users’ accounts. If only

one RP conceal the linkage of an account it cannot

be traced.

Fig. 3 shows sequences of basic actions. In

the figure, sequence (1) shows that the user accesses

the SP, presses the ―START‖ button, and is

redirected to RPM with an authentication request.

Sequence (2) shows that the RP in the middle relays

the authentication request. Sequence (3) shows that

the OP authenticates the user. Sequence (4) shows

that RPs relay the OpenID authentication response.

Finally, in sequence (5), the SP gets the

authentication response of the user and identifies the

user on the SP’s account.

(1)

(2)

(3)

(4)

(5)

Figure 3. Sequences of basic actions.

Manabu Okamoto. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 7, (Part -1) July 2016, pp.32-38

www.ijera.com 36 | P a g e

SP manages user accounts {X1, X2, …, XN}

but cannot know the linkage with the OP’s accounts,

{U1, U2, …, UN}. A user can use the account Ui on

SP and then he/she can save the answer on the

account until the deadline. The SP can tally the

answer submitted by {U1, U2, …, UN} easily and

quickly.

6.7 Re-anonymizing all users

In this section, we describe how all users,

including participators in the middle, are made

anonymous again. In order to make all users

anonymous again all RPs and SP shuffle the linkage

with all new and old accounts.

In Fig. 4, there are N users at first and L

additional users come. The SP or OP announces this

addition for all RPs, and OP and all RPs and SP add

L accounts but have not yet made any linkage each

other.

N
users

L
additional

users

Fig. 4. Additional users.

Then, the OP and all RPs need to tell the

next RP or SP about the new accounts made. First,

the OP tells the next RP about the accounts, which

then informs the next RP in line. All RPs or SP get

information about new accounts from the previous

RP and make linkages with the new accounts and

shuffles them with all its accounts. Fig. 5 shows the

shuffle action of RPs and makes new linkage

between all accounts of OP and RPs and SP. As

shown in Fig. 5, all servers mix the linkages of

accounts with both new and old ones. This is a

feature of our proposed method; after new

participants enter the system, all linkages are mixed

with both new and old ones. This helps the re-

anonymization process.

N
users

L
additional

users

Fig. 5. Shuffle linkages of accounts.

However, the linkages can only be changed

after the deadline because the user who uses account

Ui is another person after these changes. Thus, we

have to assume that our system needs not carry over

any information about each account after the

deadline. For example, in the lecture questionnaire

scenario, users need to save and rewrite their

answers but after the deadline users cannot change

their answer. Further, the system does not need to

save it on each user’s account after the system

gathers them and tallies them. Furthermore, the

system manager can erase it before it starts the

questionnaire for the next lecture. Thus, we have to

add one condition to the system. We assume the

following.

- In this system, no information on account is

carried over after the deadline. Thus, after the

deadline a user cannot see and change his/her

own past answer.

By changing the linkage, all users,

including participants in the middle, are made

anonymous again. No one can guess who the

newcomer is. For example, UN+1 is a new account

but we cannot determine whether the user who uses

account UN+1 is new or old. All linkage with all

accounts, including both new and old, are shuffled

on RPs and anyone cannot trace them. New account

UN+1 may be used by an old user at that time.

To facilitate easy understanding, we

describe a very simple example in Fig. 6. In this

figure two users, Suzuki@OP and Sato@OP, are on

OP. SP knows that there are two accounts on RP1

(qwer@RP1 and asdf@RP1) but cannot know which

is Suzuki@OP or Sato@OP. In this situation,

newcomer Tanaka@SP participates in the system in

the middle. Then, it is necessary that no one can

guess which account is a newcomer.

Now all RPs make a new account and

shuffles the linkages between both old and new

accounts. Fig. 7 shows the linkages after shuffles.

The SP gets two accounts, qwer@RP1 and

asdf@RP1, which the SP previously knew and gets a

new unknown account, zxcv@RP1. After shuffles,

no one can determine who uses the new zxcv@RP1.

After shuffles the new account may be used by old

users Suzuki@OP or Satop@OP or may be used by

a new user Tanaka@OP.

VII. ADVANTAGES AND SECURITY

ANALYSIS
In this section, we discuss the advantages and

security of our method.

Manabu Okamoto. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 7, (Part -1) July 2016, pp.32-38

www.ijera.com 37 | P a g e

RP2 wert@RP2 sdfg@RP2

RP3 erty@RP3 dfgh@RP3

OP

Suzuki@OP Sato@OP

RP1 qwer@RP1 asdf@RP1

SP

Suzuki@OPID

**********PW
Login Form

Fig. 6. Simple example.

RP2

RP3

OP

RP1

SP

Suzuki@OPID

**********PW
Login Form

Suzuki@OP Sato@OP Tanaka@OP

erty@RP3 dfgh@RP3 cvbn@RP3

wert@RP2 sdfg@RP2 xcvb@RP2

qwer@RP1 asdf@RP1 zxcv@RP1

Fig. 7. After shuffles.

7.1 Unfair answer

Unfair answer refers to the submission of

an answer more than twice or submission by an

unauthorized person. However, this anonymous

system manages all the users by accounts. The OP

manages each account, authenticates users, and

checks the right of users to submit. Further, no one

without an account on the OP can login on the OP

because they cannot be authenticated by the OP.

Each account is allowed to submit an answer once.

Consequently, no one can send answers more than

twice.

7.2 Anonymity

No one can trace the user unless all RPs

and the OP provide all linkage information

associated with the identity of the users’ accounts. If

only one RP make the linkages of accounts on the

RP secret, the trace line expires there. The more RPs

there are, the more secure the system are. This logic

is also the same as that used by mix-net.

When new participants arrive, all users are

made anonymous again. Thus, we also cannot trace

the newcomer. This point is a feature of our method.

Anonymity at the network layer needs to be

carried out by a different technology. We assume

that this system is used through the web and then we

can trace the user by the IP address which the user

had when he/she submitted. To solve this problem,

we can use an anonymous channel such as onion

router or mix-net. When we use these anonymous

channels, we have to select the servers for the

anonymous channel, get all the keys of those servers

and encrypt the message with those keys. This is a

burdensome process.

As already stated, we can use ―negative

anonymity.‖ In the university, students can use

DHCP and many students utilize the network at the

same time. Thus, no one can know a user only by

watching the IP address.

7.3 User management

SP can manage each user by the associated

account. Thus, SP can confirm which account has

not submitted the answer yet but SP cannot know

who uses the account.

On each account, the associated user can

write and save and rewrite his/her answer. Users can

carry out these actions until the deadline. However,

after the deadline a user cannot see and change

his/her answer because when the re-anonymizing

shuffle is done the account which he/she used are

used by the other user.

7.4 Security on the network

In this method, we assume that an SSO

protocol such as OpenID s used. OpenID assumes

that SSL is used for all web access. Thus, nobody

except a client and a server (SP, OP, or RP) can see

the content of The HTTPS transmission. Further, the

OpenID protocol adds the response with electronic

signature. Thus, no one can change it on the way.

Moreover, the OpenID protocol also can also add a

timestamp and sequence number and then replay

attach cannot work.

7.5 Efficiency

All users on all servers, both old and new,

can be made anonymous again by remaking all the

accounts of all users instead of our method.

However, to remake all the accounts of all the users,

all servers have to participate. For example, if RP1

remakes all the accounts of all RP1’s users and

provide information of new accounts to RP2, then

RP2 has to remake new RP’s account or make new

linkages according to the new accounts of RP1. If

RP2 also remakes all user accounts on RP2 then next

RP3 has to do so.

Manabu Okamoto. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 7, (Part -1) July 2016, pp.32-38

www.ijera.com 38 | P a g e

However, in our method, some SPs can

skip the re-anonymizing action. In particular, even

when no participants enter in the middle, for the sake

of more security it is desired to re-anonymize after

every deadline. By re-anonymizing every term, the

possibility that the user is traced is reduced. At that

time, in our method it is sufficient that only some of

the RPs exchange the linkage of the accounts. Some

RPs skip any actions during re-anonymization. All

users use different accounts after change of linkage

on some of RPs. So in view of the amount of work,

our system is significant.

In our method, almost all web actions use

OpenID. We can use a free module for our system

and it is economical and efficient. Thus, we need

little money to create the system.

7.6 Future work

In our method, multiple RPs is needed for

secure anonymity. The more RPs there are, the more

secure our system is. Users are not conscious of the

RPs because each RP redirects the user to the next

RP or OP automatically, and the user does not see

the screen of the RP. Users look at a screen with

only the SP and the OP. However, because users

need to go through all RPs, much time is required

when we use many RPs. In a simple system, one or

two RPs is sufficient. With less than three RPs, the

access time between SP and OP through all RPs is

short.

This paper is primarily theoretical; however,

we conducted a simple examination. We used

XAMPP [9] (Apache 2.4.4 and PHP 5.4.19) for the

web server (SP, OP, and RPs) and PHP OpenID

Library [10] for the SSO engine and a laptop

computer (Windows 7 32-bit, Intel Core 2.4 GHz

CPU, 4 GB RAM) for server (OP, SP, and RPs) and

client machines. We used 10 testers and three RPs.

Users completed the system in this examination in

three seconds in every action. However, this test is

very simple; more tests are required with more RPs

and testers over a longer time period in future work.

Further, in this paper we used OpenID as the

SSO protocol but we may be able to use SAML [11]

instead.

VIII. CONCLUSION
In this paper, we proposed a new

anonymous system using the SSO protocol OpenID.

In the proposed method, both users who participate

from the beginning and in the middle are made

anonymous by shuffling all linkages of all accounts

created. This method can be used not only for

questionnaires but also for simple e-voting, whistle-

blowing, anonymous BBS, and so on.

REFERENCES
[1] Fujioka, T. Okamoto, and K. Ohta, A

practical secret voting scheme for large

scale elections, Advances in Cryptology -

Auscrypt 1992, Lecture Notes in Computer

Science, 718, 1992, 244-251.

[2] What is Proxy, http:/ /whatis. techtarget.

com/definition/proxy-server

[3] D. Chaum, Untraceable electronic mail,

return address, and digital pseudonyms,

Communications of the ACM, 24(2), 1981,

84-88.

[4] M. Abe, Universally verifiable mix-net

with verification work independent of the

number of mix-servers, Advances in

Cryptology - Eurocrypt 1998, Lecture

Notes in Computer Science, 1403, 1998,

437–447.

[5] M. Abe, Mix-networks on permutation

networks, Advances in Cryptology -

Asiacrypt 1999, Lecture Notes in Computer

Science, 1716, 1999, 258–273.

[6] P.F. Syverson, D.M. Goldschlag, and M.G.

Reed, Anonymous connections and onion

routing, IEEE Journal on Selected Areas in

Communications, 16(4), 1998, 482-494.

[7] OpenID Foundation, http://openid.net/.

[8] D. Chaum, Blind signatures for untraceable

payments, Advances in Cryptology -

Crypto 1982, Plenum Press, 1983, 199-203.

[9] XAMPP, https:/ /www. Apachefriends .org/

jp/ index.html

[10] PHP OpenID Library, http:/ /www.

openidenabled.com/php-openid

[11] SAML, https: // www.oasis-open.org.

 Manabu Okamoto received B.S. and M.S.

degrees in Mathematics from Waseda

University in 1995 and 1997, respectively.
In 2010, he received a doctoral degree in

the field of Global Information and

Telecommunication from Waseda
University. He is currently an Associate

Professor at Kanagawa Institute of

Technology.

Author’s formal

photo

